Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dissecting nutrient-related co-expression networks in phosphate starved poplars.

Identifieur interne : 001438 ( Main/Exploration ); précédent : 001437; suivant : 001439

Dissecting nutrient-related co-expression networks in phosphate starved poplars.

Auteurs : Mareike Kavka [Allemagne] ; Andrea Polle [Allemagne]

Source :

RBID : pubmed:28222153

Descripteurs français

English descriptors

Abstract

Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term "response to P starvation" was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category "galactolipid synthesis". Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating "DNA modification" and "cell division" as well as "defense" and "RNA modification" and "signaling" were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented transcriptional adjustments related to down-stream nutritional changes and stress.

DOI: 10.1371/journal.pone.0171958
PubMed: 28222153
PubMed Central: PMC5319788


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dissecting nutrient-related co-expression networks in phosphate starved poplars.</title>
<author>
<name sortKey="Kavka, Mareike" sort="Kavka, Mareike" uniqKey="Kavka M" first="Mareike" last="Kavka">Mareike Kavka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28222153</idno>
<idno type="pmid">28222153</idno>
<idno type="doi">10.1371/journal.pone.0171958</idno>
<idno type="pmc">PMC5319788</idno>
<idno type="wicri:Area/Main/Corpus">001438</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001438</idno>
<idno type="wicri:Area/Main/Curation">001438</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001438</idno>
<idno type="wicri:Area/Main/Exploration">001438</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dissecting nutrient-related co-expression networks in phosphate starved poplars.</title>
<author>
<name sortKey="Kavka, Mareike" sort="Kavka, Mareike" uniqKey="Kavka M" first="Mareike" last="Kavka">Mareike Kavka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminum (analysis)</term>
<term>Calcium (analysis)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Iron (analysis)</term>
<term>Magnesium (analysis)</term>
<term>Manganese (analysis)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Nitrogen (analysis)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Phosphates (deficiency)</term>
<term>Phosphorus (analysis)</term>
<term>Populus (chemistry)</term>
<term>Populus (metabolism)</term>
<term>Potassium (analysis)</term>
<term>Sulfur (analysis)</term>
<term>Zinc (analysis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aluminium (analyse)</term>
<term>Azote (analyse)</term>
<term>Calcium (analyse)</term>
<term>Fer (analyse)</term>
<term>Magnésium (analyse)</term>
<term>Manganèse (analyse)</term>
<term>Phosphates (déficit)</term>
<term>Phosphore (analyse)</term>
<term>Populus (composition chimique)</term>
<term>Populus (métabolisme)</term>
<term>Potassium (analyse)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Soufre (analyse)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
<term>Zinc (analyse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Aluminum</term>
<term>Calcium</term>
<term>Iron</term>
<term>Magnesium</term>
<term>Manganese</term>
<term>Nitrogen</term>
<term>Phosphorus</term>
<term>Potassium</term>
<term>Sulfur</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Aluminium</term>
<term>Azote</term>
<term>Calcium</term>
<term>Fer</term>
<term>Magnésium</term>
<term>Manganèse</term>
<term>Phosphore</term>
<term>Potassium</term>
<term>Soufre</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Metabolic Networks and Pathways</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term "response to P starvation" was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category "galactolipid synthesis". Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating "DNA modification" and "cell division" as well as "defense" and "RNA modification" and "signaling" were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented transcriptional adjustments related to down-stream nutritional changes and stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28222153</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Dissecting nutrient-related co-expression networks in phosphate starved poplars.</ArticleTitle>
<Pagination>
<MedlinePgn>e0171958</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0171958</ELocationID>
<Abstract>
<AbstractText>Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term "response to P starvation" was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category "galactolipid synthesis". Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating "DNA modification" and "cell division" as well as "defense" and "RNA modification" and "signaling" were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented transcriptional adjustments related to down-stream nutritional changes and stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kavka</LastName>
<ForeName>Mareike</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CPD4NFA903</RegistryNumber>
<NameOfSubstance UI="D000535">Aluminum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>I38ZP9992A</RegistryNumber>
<NameOfSubstance UI="D008274">Magnesium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000535" MajorTopicYN="N">Aluminum</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008274" MajorTopicYN="N">Magnesium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28222153</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0171958</ArticleId>
<ArticleId IdType="pii">PONE-D-16-44297</ArticleId>
<ArticleId IdType="pmc">PMC5319788</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2013 Aug 2;288(31):22670-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23788639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2092-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Sep;19(5):579-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Jan 24;11:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jun;66(12):3523-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25944926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 06;7:396</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27092147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jul 15;24(14):1650-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25271326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):275-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Jun;56(6):1107-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25759329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Sep 16;7:1398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27695473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Jun;105(7):1073-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20430785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):1107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):262-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19605549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1096-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jul;47(2):238-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 17;10:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Nov;11(11):1156-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22843991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Feb;67(3):947-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26663563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 May;37(5):1159-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24344809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jan;30(1):85-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1260-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(3):871-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24420568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Apr 1;26(4):1480-1496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24692421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Sep 09;6(9):e1001102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20838596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Feb 12;20(3):307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2006 Nov;88(11):1767-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16757083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 29;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(1):93-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18212031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb 1;116(2):447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jul;96(3):686-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jan;36(1):22-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26420793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2015 May 22;16:169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25994840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:185-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21370979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jul;195(2):356-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22578268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1223-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 May 03;12:62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Sep;163(1):161-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23852440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1361-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Oct;66(20):6483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26188206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Jul;24(5):369-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24338046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14953-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25271318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2000 Dec;28(6):729-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11171187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11934-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Feb 27;537(1-3):128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Sep 23;16(1):206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27663513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e21800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21789182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Nov 30;2:83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645553</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
</settlement>
<orgName>
<li>Université de Göttingen</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Kavka, Mareike" sort="Kavka, Mareike" uniqKey="Kavka M" first="Mareike" last="Kavka">Mareike Kavka</name>
</region>
<name sortKey="Kavka, Mareike" sort="Kavka, Mareike" uniqKey="Kavka M" first="Mareike" last="Kavka">Mareike Kavka</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001438 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001438 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28222153
   |texte=   Dissecting nutrient-related co-expression networks in phosphate starved poplars.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28222153" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020